These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Towards Understanding Photodegradation Pathways in Lignins: The Role of Intramolecular Hydrogen Bonding in Excited States.
    Author: Young JD, Staniforth M, Dean JC, Roberts GM, Mazzoni F, Karsili TN, Ashfold MN, Zwier TS, Stavros VG.
    Journal: J Phys Chem Lett; 2014 Jun 19; 5(12):2138-43. PubMed ID: 26270505.
    Abstract:
    The photoinduced dynamics of the lignin building blocks syringol, guaiacol, and phenol were studied using time-resolved ion yield spectroscopy and velocity map ion imaging. Following irradiation of syringol and guaiacol with a broad-band femtosecond ultraviolet laser pulse, a coherent superposition of out-of-plane OH torsion and/or OMe torsion/flapping motions is created in the first excited (1)ππ* (S1) state, resulting in a vibrational wavepacket, which is probed by virtue of a dramatic nonplanar → planar geometry change upon photoionization from S1 to the ground state of the cation (D0). Any similar quantum beat pattern is absent in phenol. In syringol, the nonplanar geometry in S1 is pronounced enough to reduce the degree of intramolecular H bonding (between OH and OMe groups), enabling H atom elimination from the OH group. For guaiacol, H bonding is preserved after excitation, despite the nonplanar geometry in S1, and prevents O-H bond fission. This behavior affects the propensities for forming undesired phenoxyl radical sites in these three lignin chromophores and provides important insight into their relative "photostabilities" within the larger biopolymer.
    [Abstract] [Full Text] [Related] [New Search]