These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Efficacy and site specificity of hydrogen abstraction from DNA 2-deoxyribose by carbonate radicals.
    Author: Roginskaya M, Moore TJ, Ampadu-Boateng D, Razskazovskiy Y.
    Journal: Free Radic Res; 2015; 49(12):1431-7. PubMed ID: 26271311.
    Abstract:
    The carbonate radical anion CO(3)(•-) is a potent reactive oxygen species (ROS) produced in vivo through enzymatic one-electron oxidation of bicarbonate or, mostly, via the reaction of CO(2) with peroxynitrite. Due to the vitally essential role of the carbon dioxide/bicarbonate buffer system in regulation of physiological pH, CO(3)(•-) is arguably one of the most important ROS in biological systems. So far, the studies of reactions of CO(3)(•-) with DNA have been focused on the pathways initiated by oxidation of guanines in DNA. In this study, low-molecular products of attack of CO(3)(•-) on the sugar-phosphate backbone in vitro were analyzed by reversed phase HPLC. The selectivity of damage in double-stranded DNA (dsDNA) was found to follow the same pattern C4' > C1' > C5' for both CO(3)(•-) and the hydroxyl radical, though the relative contribution of the C1' damage induced by CO(3)(•-) is substantially higher. In single-stranded DNA (ssDNA) oxidation at C1' by CO3(•-) prevails over all other sugar damages. An approximately 2000-fold preference for 8-oxoguanine (8oxoG) formation over sugar damage found in our study identifies CO(3)(•-) primarily as a one-electron oxidant with fairly low reactivity toward the sugar-phosphate backbone.
    [Abstract] [Full Text] [Related] [New Search]