These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of subcutaneous insulin detemir on glucose flux, lipolysis and electroencephalography in type 1 diabetes.
    Author: Herring R, Knight R, Shojaee-Moradie F, Johnsen S, Umpleby AM, Jackson N, Jones R, Dijk DJ, Russell-Jones DL.
    Journal: Diabetes Obes Metab; 2015 Nov; 17(11):1100-3. PubMed ID: 26272173.
    Abstract:
    The aim of the present study was to investigate the effects of subcutaneous detemir on glucose flux, lipid metabolism and brain function. Twelve people with type 1 diabetes received, in random order, 0.5 units/kg body weight detemir or NPH insulin. Glucose concentration was clamped at 5 mmol/l then increased to 10 mmol/l. Glucose production rate (glucose Ra), glucose uptake (glucose Rd) and glycerol production (glycerol Ra) were measured with a constant intravenous infusion of [6,6(2) H(2)]glucose and [(2)H(5)]glycerol. Electroencephalography direct current (DC) and alternating current (AC) potentials were measured. While detemir induced similar effects on glucose Ra, glucose Rd and glycerol Ra during euglycaemia compared with NPH, it triggered a distinct negative shift in DC potentials, with a significant treatment effect in frontal cerebrocortical channels (p < 0.001). AC spectral power showed significant differences in theta and alpha frequencies during euglycaemia (p = 0.03). Subcutaneous detemir exerts different effects on brain function when compared with NPH in people with type 1 diabetes. This may be an important mechanism behind the limitation of weight gain with detemir.
    [Abstract] [Full Text] [Related] [New Search]