These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Influence of ensiling, exogenous protease addition, and bacterial inoculation on fermentation profile, nitrogen fractions, and ruminal in vitro starch digestibility in rehydrated and high-moisture corn.
    Author: Ferraretto LF, Fredin SM, Shaver RD.
    Journal: J Dairy Sci; 2015 Oct; 98(10):7318-27. PubMed ID: 26277311.
    Abstract:
    Exogenous protease addition may be an option to increase proteolysis of zein proteins and thus starch digestibility in rehydrated and high-moisture corn (HMC) ensiled for short periods. In addition, microbial inoculation may accelerate fermentation and increase acid production and thus increase solubilization of zein proteins. Four experiments were performed to evaluate the effect on fermentation profile, N fractions, and ruminal in vitro starch digestibility (ivSD) of the following: (1) rehydration and ensiling of dry ground corn; (2) exogenous protease addition to rehydrated un-ensiled and ensiled corn; (3) exogenous protease addition or inoculation in rehydrated ensiled corn; and (4) exogenous protease addition or inoculation in HMC. Experiments 1, 2, and 3 were performed with 7 treatments: dry ground corn (DGC); DGC rehydrated to a targeted dry matter content of 70% (REH); REH treated with exogenous protease (REH+); REH ensiled for 30 d (ENS); ENS treated with exogenous protease (ENS+); ENS treated with a microbial inoculant containing Lactobacillus plantarum, Lactobacillus casei, Enterococcus faecium, and Pediococcus sp. (ENSI); and ENS treated with exogenous protease and microbial inoculant (ENSI+). Experiment 1 compared DGC, REH, and ENS with ivSD being greater for ENS (64.9%) than DGC and REH (51.7% on average). Experiment 2 compared REH and ENS without or with exogenous protease addition (REH+ and ENS+, respectively). Ensiling and exogenous protease addition increased ivSD, but exogenous protease addition was more effective in ENS than REH (6.4 vs. 2.6 percentage unit increase). Experiment 3 compared the effects of exogenous protease addition and inoculation in ENS corn (ENS, ENS+, ENSI, and ENSI+). The addition of protease, but not inoculant, increased ivSD. Inoculation reduced pH and acetate, propionate, and ethanol concentrations, and increased lactate and total acid concentrations. In experiment 4, 8 treatments were a combination of HMC noninoculated or inoculated with 1 of 3 microbial inoculants and with or without exogenous protease addition. The inoculant treatments contained (1) Lactobacillus buchneri 40788 and Pediococcus pentosaceus, (2) L. buchneri 40788, and (3) a mixture of P. pentosaceus and Propionibacterium freudenreichii. Protease, but not inoculation, increased ivSD by 7.5 percentage units (44.4 vs. 51.9%). Protease addition increased ivSD in rehydrated corn and HMC. Microbial inoculation improved fermentation profiles but did not affect ivSD.
    [Abstract] [Full Text] [Related] [New Search]