These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A tryptophan derivative TD-26 attenuates thrombus formation by inhibiting both PI3K/Akt signaling and binding of fibrinogen to integrin αIIbβ3.
    Author: Chen Y, Wang Y, Xie Z, Ming X, Li Z, Kong Y.
    Journal: Biochem Biophys Res Commun; 2015 Sep 25; 465(3):516-22. PubMed ID: 26278818.
    Abstract:
    The incidence and mortality of thrombotic disorders are rapidly increasing worldwide. The existing antithrombotic drugs, however, are associated with side effects, especially bleeding complications. Therefore, there remains a need for the development of more effective and safer antithrombotic agents. In this study, we discovered a new synthetic tryptophan derivative TD-26, producing potent inhibitory effect on platelet aggregation while without causing obvious bleeding risk. It has been shown that TD-26 inhibited platelet aggregation induced by ADP, thrombin, U46619 and collagen in vitro and suppressed the platelet aggregation induced by ADP ex vivo. Mechanism studies indicated that TD-26 inhibited platelet adhesion to fibrinogen-coated surfaces, blocked the binding of fibrinogen to integrin αIIbβ3 and reduced Akt(Ser473) phosphorylation in platelet phosphatidylinositol 3-kinase (PI3K) signaling. Furthermore, TD-26 exhibited potent antithrombotic activity in vivo. In animal models, it decreased death of mice with acute pulmonary thrombosis by 90% and attenuated thrombosis weight by 60.3%, both at a dose of 3 mg/kg. Additionally, TD-26 did not obviously prolong bleeding time in mice. Taken together, our results reveal that TD-26 is a novel antithrombotic compound exhibiting both integrin αIIbβ3 inhibition and PI3K signaling blockage, with a low bleeding risk.
    [Abstract] [Full Text] [Related] [New Search]