These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Iron Supplementation in Iron-Replete and Nonanemic Pregnant Women in Tanzania: A Randomized Clinical Trial. Author: Etheredge AJ, Premji Z, Gunaratna NS, Abioye AI, Aboud S, Duggan C, Mongi R, Meloney L, Spiegelman D, Roberts D, Hamer DH, Fawzi WW. Journal: JAMA Pediatr; 2015 Oct; 169(10):947-55. PubMed ID: 26280534. Abstract: IMPORTANCE: Anemia is common in pregnancy and increases the risk of adverse outcomes. Iron deficiency is a leading cause of anemia in sub-Saharan Africa, and iron supplementation is the standard of care during pregnancy; however, recent trials among children have raised concerns regarding the safety of iron supplementation in malaria-endemic regions. There is limited evidence on the safety of iron supplementation during pregnancy in these areas. OBJECTIVE: To evaluate the safety and efficacy of iron supplementation during pregnancy in a malaria-endemic region. DESIGN, SETTING, AND PARTICIPANTS: We conducted a randomized, double-blind, placebo-controlled clinical trial among pregnant women presenting for antenatal care in Dar es Salaam, Tanzania, from September 28, 2010, through October 4, 2012. Iron-replete, nonanemic women were eligible if they were uninfected with human immunodeficiency virus, primigravidae or secundigravidae, and at or before 27 weeks of gestation. Screening of 21,316 women continued until the target enrollment of 1500 was reached. Analyses followed the intent-to-treat principle and included all randomized participants. INTERVENTIONS: Participants were randomized to receive 60 mg of iron or placebo, returning every 4 weeks for standard prenatal care, including malaria screening, prophylaxis with the combination of sulfadoxine and pyrimethamine, and treatment, as needed. MAIN OUTCOMES AND MEASURES: The primary outcomes were placental malaria, maternal hemoglobin level at delivery, and birth weight. RESULTS: Among 1500 study participants (750 randomized for each group), 731 in iron group and 738 in placebo group had known birth outcomes and 493 in iron group and 510 in placebo group had placental samples included in the analysis. Maternal characteristics were similar at baseline in the iron and placebo groups, and 1354 (91.7%) used malaria control measures. The risk of placental malaria was not increased by maternal iron supplementation (relative risk [RR], 1.03; 95% CI, 0.65-1.65), and iron supplementation did not significantly affect birth weight (3155 vs 3137 g, P = .89). Compared with placebo, iron supplementation significantly improved the mean increase from baseline to delivery for hemoglobin (0.1 vs -0.7 g/dL, P < .001) and serum ferritin (41.3 vs 11.3 µg/L, P < .001). Iron supplementation significantly decreased the risk of anemia at delivery by 40% (RR, 0.60; 95% CI, 0.51-0.71) but not severe anemia (RR, 0.68; 95% CI, 0.41-1.14). Iron supplementation significantly reduced the risk of maternal iron deficiency at delivery by 52% (RR, 0.48; 95% CI, 0.32-0.70) and the risk of iron deficiency anemia by 66% (RR, 0.34; 95% CI, 0.19-0.62). CONCLUSIONS AND RELEVANCE: Prenatal iron supplementation among iron-replete, nonanemic women was not associated with an increased risk of placental malaria or other adverse events in the context of good malaria control. Participants receiving supplementation had improved hematologic and iron status at delivery compared with the placebo group. These findings provide support for continued administration of iron during pregnancy in malaria-endemic regions. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT01119612.[Abstract] [Full Text] [Related] [New Search]