These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Independent association between brachial-ankle pulse wave velocity and global longitudinal strain of left ventricle. Author: Kim HL, Seo JB, Chung WY, Kim SH, Kim MA, Zo JH. Journal: Int J Cardiovasc Imaging; 2015 Dec; 31(8):1563-70. PubMed ID: 26298315. Abstract: Data regarding the influence of arterial stiffness on left ventricular (LV) long-axis function has been scarce. This study was performed to investigate the association between brachial-ankle pulse wave velocity (baPWV) and LV global longitudinal strain (GLS). A total of 248 subjects (mean age 59.2 ± 12.3 years; 50% were men) without structural heart problems were retrospectively evaluated. LV GLS was measured by 2-dimensional speckle-tracking echocardiography. baPWV measurements were made on the same day of echocardiography. The incidences of hypertension, diabetes mellitus, and dyslipidemia were 51.2, 19.4, and 22.2%, respectively. The mean value of baPWV was 1557 ± 285 cm/s. In simple linear regression analysis, baPWV had a significant positive association with LV GLS (β = 0.215, P = 0.001). In multiple linear regression analysis, baPWV was independently associated with LV GLS even after controlling for potential confounders, including age, gender, body mass index, systolic blood pressure, heart rate, HbA1c, total cholesterol, estimated glomerular filtration rate, left ventricular mass index, E/A, septal e' velocity and pulmonary artery systolic pressure (β = 0.211, P = 0.028). The results of this study suggest that baPWV may be independently associated with LV GLS, supporting the evidence of a close interaction between arterial stiffness and LV function. Increased arterial stiffness may result in impaired LV longitudinal function.[Abstract] [Full Text] [Related] [New Search]