These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Polybrominated diphenyl ethers, organochlorine pesticides, and polycyclic aromatic hydrocarbons in water from the Jiulong River Estuary, China: levels, distributions, influencing factors, and risk assessment.
    Author: Wu Y, Wang X, Li Y, Ya M, Luo H, Hong H.
    Journal: Environ Sci Pollut Res Int; 2017 Apr; 24(10):8933-8945. PubMed ID: 26300350.
    Abstract:
    Estuarine systems play an important role in the transportation and transformation of organic pollutants from rivers. Polybrominated diphenyl ether (PBDE), organochlorine pesticide (OCP), and polycyclic aromatic hydrocarbon (PAH) concentrations in water of the Jiulong River Estuary (JRE), China, were investigated to characterize their distribution, possible source, and potential ecological risk as well as the influencing factors. The total concentrations of PBDEs, OCPs, and PAHs varied from 5.2 to 12.3 pg L-1, from 29.1 to 96.4 ng L-1, and from 28.6 to 48.5 ng L-1, respectively. Their compositions were all consistent at different stations; even the input pathways were multifarious. A source analysis showed that PBDEs may come from the flame retardant usages of penta-BDE and deca-BDE; hexachlorocyclohexane isomers (HCHs) were from the use of technical HCHs, while DDTs were attributed to early residuals of industrial sources, and PAHs were mainly from pyrolytic sources. The spatial distributions of PBDEs and OCPs were quite similar with their concentrations, decreasing along the estuary and then increasing when passing the Xiamen Harbor. PAH concentrations were similar along the whole estuary, suggesting that local sources and hydrological conditions might be the influencing factors. The concentrations of these pollutants changed with tidal conditions and were positively correlated with SPM, DOC, and chlorophyll a but negatively correlated with salinity. The ecological risk assessment revealed that OCPs and PAHs posed slightly higher potential risks to aquatic organism in the study area.
    [Abstract] [Full Text] [Related] [New Search]