These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Low-Frequency Repetitive Transcranial Magnetic Stimulation Targeted to Premotor Cortex Followed by Primary Motor Cortex Modulates Excitability Differently Than Premotor Cortex or Primary Motor Cortex Stimulation Alone.
    Author: Chen M, Deng H, Schmidt RL, Kimberley TJ.
    Journal: Neuromodulation; 2015 Dec; 18(8):678-85. PubMed ID: 26307511.
    Abstract:
    OBJECTIVES: The excitability of primary motor cortex (M1) can be modulated by applying low-frequency repetitive transcranial magnetic stimulation (rTMS) over M1 or premotor cortex (PMC). A comparison of inhibitory effect between the two locations has been reported with inconsistent results. This study compared the response secondary to rTMS applied over M1, PMC, and a combined PMC + M1 stimulation approach which first targets stimulation over PMC then M1. MATERIALS AND METHODS: Ten healthy participants were recruited for a randomized, cross-over design with a one-week washout between visits. Each visit consisted of a pretest, an rTMS intervention, and a post-test. Outcome measures included short interval intracortical inhibition (SICI), intracortical facilitation (ICF), and cortical silent period (CSP). Participants received one of the three interventions in random order at each visit including: 1-Hz rTMS at 90% of resting motor threshold to: M1 (1200 pulses), PMC (1200 pulses), and PMC + M1 (600 pulses each, 1200 total). RESULTS: PMC + M1 stimulation resulted in significantly greater inhibition than the other locations for ICF (P = 0.005) and CSP (P < 0.001); for SICI, increased inhibition (group effect) was not observed after any of the three interventions, and there was no significant difference between the three interventions. CONCLUSION: The results indicate that PMC + M1 stimulation may modulate brain excitability differently from PMC or M1 alone. CSP was the assessment measure most sensitive to changes in inhibition and was able to distinguish between different inhibitory protocols. This work presents a novel procedure that may have positive implications for therapeutic interventions.
    [Abstract] [Full Text] [Related] [New Search]