These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A Comparison of the Stability and Reactivity of Diamido- and Diaminocarbene Copper Alkoxide and Hydride Complexes. Author: Collins LR, Riddlestone IM, Mahon MF, Whittlesey MK. Journal: Chemistry; 2015 Sep 28; 21(40):14075-84. PubMed ID: 26310393. Abstract: The mononuclear N-heterocyclic carbene (NHC) copper alkoxide complexes [(6-NHC)CuOtBu] (6-NHC = 6-MesDAC (1), 6-Mes (2)) have been prepared by addition of the free carbenes to the tetrameric tert-butoxide precursor [Cu(OtBu)]4, or by protonolysis of [(6-NHC)CuMes] (6-NHC = 6-MesDAC (3), 6-Mes (4)) with tBuOH. In contrast to the relatively stable diaminocarbene complex 2, the diamidocarbene derivative 1 proved susceptible to both thermal and hydrolytic ring-opening reactions, the latter affording [(6-MesDAC)Cu(OC(O)CMe2C(O)N(H)Mes)(CNMes)] (6). The intermediacy of [(6-MesDAC)Cu(OH)] in this reaction was supported by the generation of Cu2O as an additional product. Attempts to generate an isolable copper hydride complex of the type [(6-MesDAC)CuH] by reaction of 1 with Et3SiH resulted instead in migratory insertion to generate [(6-MesDAC-H)Cu(P(p-tolyl)3)] (9) upon trapping by P(p-tolyl)3. Migratory insertion was also observed during attempts to prepare [(6-Mes)CuH], with [(6-Mes-H)Cu(6-Mes)] (10) isolated, following a reaction that was significantly slower than in the 6-MesDAC case. The longer lifetime of [(6-Mes)CuH] allowed it to be trapped stoichiometrically by alkyne, and also employed in the catalytic semi-reduction of alkynes and hydrosilylation of ketones.[Abstract] [Full Text] [Related] [New Search]