These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The TFG-TEC oncoprotein induces transcriptional activation of the human β-enolase gene via chromatin modification of the promoter region.
    Author: Kim AY, Lim B, Choi J, Kim J.
    Journal: Mol Carcinog; 2016 Oct; 55(10):1411-23. PubMed ID: 26310886.
    Abstract:
    Recurrent chromosome translocations are the hallmark of many human cancers. A proportion of human extraskeletal myxoid chondrosarcomas (EMCs) are associated with the characteristic chromosomal translocation t(3;9)(q11-12;q22), which results in the formation of a chimeric protein in which the N-terminal domain of the TRK-fused gene (TFG) is fused to the translocated in extraskeletal chondrosarcoma (TEC; also called CHN, CSMF, MINOR, NOR1, and NR4A3) gene. The oncogenic effect of this translocation may be due to the higher transactivation ability of the TFG-TEC chimeric protein; however, downstream target genes of TFG-TEC have not yet been identified. The results presented here, demonstrate that TFG-TEC activates the human β-enolase promoter. EMSAs, ChIP assays, and luciferase reporter assays revealed that TFG-TEC upregulates β-enolase transcription by binding to two NGFI-B response element motifs located upstream of the putative transcription start site. In addition, northern blot, quantitative real-time PCR, and Western blot analyses showed that overexpression of TFG-TEC up-regulated β-enolase mRNA and protein expression in cultured cell lines. Finally, ChIP analyses revealed that TFG-TEC controls the activity of the endogenous β-enolase promoter by promoting histone H3 acetylation. Overall, the results presented here indicate that TFG-TEC triggers a regulatory gene hierarchy implicated in cancer cell metabolism. This finding may aid the development of new therapeutic strategies for the treatment of human EMCs. © 2015 Wiley Periodicals, Inc.
    [Abstract] [Full Text] [Related] [New Search]