These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [Characteristics of Atmospheric Nitrogen Wet Deposition and Associated Impact on N Transport in the Watershed of Red Soil Area in Southern China].
    Author: Hao Z, Gao Y, Zhang JZ, Xu YJ, Yu GR.
    Journal: Huan Jing Ke Xue; 2015 May; 36(5):1630-8. PubMed ID: 26314109.
    Abstract:
    In this study, Qianyanzhou Xiangxi River Basin in the rainy season was monitored to measure different nitrogen form concentrations of rainfall and rainfall-runoff process, in order to explore the southern red soil region of nitrogen wet deposition characteristics and its influence on N output in watershed. The results showed that there were 27 times rainfall in the 2014 rainy season, wherein N wet deposition load reached 43.64-630.59 kg and N deposition flux were 0.44-6.43 kg · hm(-2), which presented a great seasonal variability. We selected three rainfall events to make dynamic analysis. The rainfall in three rainfall events ranged from 8 to 14mm, and the deposition load in the watershed were from 18.03 to 41.16 kg and its flux reached 0.18 to 0.42 kg · hm(-2). Meanwhile, this three rainfall events led to 4189.38 m3 of the total runoff discharge, 16.72 kg of total nitrogen (TN) load and 4.64 kg · hm(-2) of flux, wherein dissolved total nitrogen (DTN) were 9.64 kg and 2.68 kg · hm(-2), ammonium-nitrogen (NH(4+)-N) were 2.93 kg and 0.81 kg · hm(-2), nitrate-nitrogen (NO(3-)-N) were 5.60 kg and 1.56 kg · hm(-2). The contribution rate of N wet deposition to N output from watershed reached 56%-94% , implying that the rainfall-runoff had tremendous contribution to N loss in this small watershed. The concentrations of TN in water had exceeded 1.5 mg · L(-1) of eutrophication threshold, which existed an eutrophication potential.
    [Abstract] [Full Text] [Related] [New Search]