These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Diverse phenotypes and transfusion requirements due to interaction of β-thalassemias with triplicated α-globin genes.
    Author: Mehta PR, Upadhye DS, Sawant PM, Gorivale MS, Nadkarni AH, Shanmukhaiah C, Ghosh K, Colah RB.
    Journal: Ann Hematol; 2015 Dec; 94(12):1953-8. PubMed ID: 26319530.
    Abstract:
    Co-inheritance of triplicated α-genes can alter the clinical and hematological phenotypes of β-thalassemias. We evaluated the phenotypic diversity and transfusion requirements in β-thalassemia heterozygotes, homozygotes, and normal individuals with associated α-gene triplication. Clinical and hematological evaluation was done and the β-thalassemia mutations characterized by a covalent reverse dot blot hybridization/amplification refractory mutation system. Alpha-globin gene triplication was assessed by multiplex PCR. During the last 2.5 years, 181 β-thalassemia patients and β-thalassemia carriers with an unusual clinical presentation were referred to us for screening for the presence of associated α-globin gene triplication. Twenty-nine of them had associated α-gene triplication (3 β-thalassemia homozygotes or compound heterozygotes and 26 β-thalassemia heterozygotes). One β-thalassemia compound heterozygote [IVS 1-5 (G → C) + CD 41/42 (-CTTT)] was anemic at birth and required blood transfusions unusually early by 6 weeks of age. The second patient (4.5 years) was also clinically severe and became transfusion dependent in spite of having one mild β-thalassemia mutation [Capsite +1 (A → C)]. The third case (3.5 years) who was homozygous for a mild β-gene mutation [-88 (C → T)] with α gene triplication was untransfused. The 26 β-thalassemia heterozygotes with associated triplicated α-genes presented variably, with a β-thalassemia intermedia-like presentation. While screening the family members of all these cases, we found another 10 β-thalassemia heterozygotes and 9 normal individuals with α-globin gene triplication; however, all of them were asymptomatic. Beta-thalassemia carriers, homozygotes, and compound heterozygotes with an unusual presentation should be screened for the possible presence of associated α-globin gene triplication which could influence the clinical and hematological presentation.
    [Abstract] [Full Text] [Related] [New Search]