These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Novel stimuli responsive gellan gum-graft-poly(DMAEMA) hydrogel as adsorbent for anionic dye. Author: Karthika JS, Vishalakshi B. Journal: Int J Biol Macromol; 2015 Nov; 81():648-55. PubMed ID: 26325677. Abstract: In this study, gellan gum-grafted-poly((2-dimethylamino) ethyl methacrylate) (GG-g-poly(DMAEMA)) hydrogel was made by free radical polymerization in aqueous media employing microwave irradiation technique. Ammonium persulfate (APS)/N,N,N',N'-tetramethylethylenediamine (TMEDA) were used as initiator-accelerator pair. N,N'-methylenebisacrylamide (MBA) has been used as crosslinker. The gel was characterized by FTIR, XRD, TGA, DSC and SEM techniques. The characteristic peaks at 1724, 2630, 1147, 1650 and 1535cm(-1) in the IR spectrum confirms grafting and gel formation. The TGA data reveals that synthesized gels were thermally more stable than gellan gum. The XRD studies confirm the crystalline nature of the synthesized material. Swelling behaviour of the hydrogel under different temperatures and pH conditions was investigated. The results indicated drastic changes in swelling around pH 7.0 and 50°C. The gels were evaluated as an adsorbent to remove an anionic dye, methyl orange (MO), from aqueous solution. The pH conditions for maximum adsorption were optimized, the adsorption data is observed to fit best to the Freundlich isotherm model and the maximum adsorption capacity was found to be 25.8mgg(-1). The kinetic analysis revealed a second-order adsorption process. The thermodynamic parameters showed the adsorption to be exothermic and non-spontaneous at high temperatures.[Abstract] [Full Text] [Related] [New Search]