These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of hemodynamic variables on myocardial K+ balance during and after shortlasting ischemia. Author: Aksnes G, Ellingsen O, Rutlen DL, Ilebekk A. Journal: J Mol Cell Cardiol; 1989 Dec; 21(12):1273-84. PubMed ID: 2632810. Abstract: Ischemia-induced myocardial potassium loss and post-ischemic potassium reuptake was quantitated in 8 open chest pigs during control conditions and during hemodynamic alterations which have been shown to increase steady state sarcolemmal potassium fluxes. Myocardial K+ balance was continuously computed before, during and after a 90 s occlusion of a branch of the circumflex artery during control (CTR), during pacing tachycardia (PACE: 34% increase in heart rate), during proximal aortic constriction (AC; 28% increase in LVSP), and during isoprenaline infusion (ISO; 135% increase in LVdP/dt and 35% increase in heart rate). Ischemia-induced potassium loss increased significantly (40%) during ISO only. Higher basal metabolic rate, increased sarcolemmal K+ conductance, or ischemia-induced depression of a more active Na/K-pump during ISO are possible explanations to why increased K+ loss appeared in this situation. The maximal rate of post-ischemic potassium reuptake was not different from CTR during PACE and ISO, but it was reduced during AC, which might be due to persisting subendocardial ischemia in early reperfusion when ventricular wall stress is high. The extent of potassium restoration was not different from CTR during AC, PACE and ISO.[Abstract] [Full Text] [Related] [New Search]