These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Kinetic stability and heat capacity of vapor-deposited glasses of o-terphenyl. Author: Whitaker KR, Tylinski M, Ahrenberg M, Schick C, Ediger MD. Journal: J Chem Phys; 2015 Aug 28; 143(8):084511. PubMed ID: 26328860. Abstract: The reversing heat capacity of vapor-deposited o-terphenyl glasses was determined by in situ alternating current nanocalorimetry. Glasses were deposited at substrate temperatures ranging from 0.39 Tg to Tg, where Tg is the glass transition temperature. Glasses deposited near 0.85 Tg exhibited very high kinetic stability; a 460 nm film required ∼10(4.8) times the structural relaxation time of the equilibrium supercooled liquid to transform into the liquid state. For the most stable o-terphenyl glasses, the heat capacity was lower than that of the ordinary liquid-cooled glass by (1 ± 0.4)%; this decrease represents half of the difference in heat capacity between the ordinary glass and crystal. Vapor-deposited o-terphenyl glasses exhibit greater kinetic stability than vapor-deposited glasses of indomethacin, in qualitative agreement with recent surface diffusion measurements indicating faster surface diffusion on o-terphenyl glasses. The stable glass to supercooled liquid transformation was thickness-dependent, consistent with transformation via a propagating front initiated at the free surface.[Abstract] [Full Text] [Related] [New Search]