These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Variation in mouthguard thickness according to heating conditions during fabrication Part 2: sheet shape and effect of thermal shrinkage. Author: Takahashi M, Koide K. Journal: Dent Traumatol; 2016 Jun; 32(3):185-91. PubMed ID: 26337263. Abstract: The aim of this study was to investigate the influence of the thermal shrinkage to thickness of the mouthguard with the heating method by the setting position of a sheet and the working model using an ethylene vinyl acetate sheet prepared by extrusion. Mouthguards were fabricated with EVA sheets (4.0 mm thick) using a vacuum-forming machine. Two forming conditions were compared: the square sheet was pinched by the clamping frame attached to the forming machine (S); and the round sheet was pinched at the top and bottom and stabilized by the circle tray (R). The sheet was aligned to make the sheet's extrusion direction vertical (V) or parallel (P) to the midline of the working model. The following two heating conditions were compared: (i) the sheet was molded when it sagged 15 mm below the level of the sheet frame measured at the top of the post in condition S (S-0), or that sagged 10 mm in condition R (R-0) in the usual position; (ii) the sheet frame was lowered by 50 mm from the ordinary height (S-50, R-50). Postmolding thickness was determined using a measuring device. Measurement points were the incisal and molar portion. Differences in the change of thickness of mouthguards molded under different heating conditions and extrusion directions for each sheet shape were analyzed by two-way analysis of variance (anova). The results of this study showed that by lowering the height of the sheet frame, the difference of the sheet temperature of each part was reduced. Among all sheets, condition V produced under S-50 and R-50 had the largest thickness independently of shape sheet. Furthermore, thickness reduction is effectively suppressed by aligning the direction of the extruded sheet to be vertical to the midline of the model.[Abstract] [Full Text] [Related] [New Search]