These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: ERG11 mutations and expression of resistance genes in fluconazole-resistant Candida albicans isolates.
    Author: Xu Y, Sheng F, Zhao J, Chen L, Li C.
    Journal: Arch Microbiol; 2015 Nov; 197(9):1087-93. PubMed ID: 26349561.
    Abstract:
    Azole resistance in the pathogenic yeast Candida albicans poses significant challenges for its antibiotic treatment. The conformational change of the target enzyme 14 alpha-demethylase (Erg11p) due to ERG11 gene mutations is one of the mechanisms resulting in the azole resistance. ERG11 of 23 isolates (8 susceptible and 15 resistant) and 6 standard strains of Candida albicans were amplified and sequenced. Nineteen missense mutations were detected. Two mutations, G487T (A114S) and T916C (Y257H), coexisted exclusively in 14 fluconazole-resistant isolates. To identify the resistance mechanisms in the isolates with G487T and T916C mutations, we compared the expression of 5 resistance-related genes in the 14 azole-resistant isolates with those in the susceptible type strain ATCC 10231, Saccharomyces cerevisiae AD/CDR1 and AD/CDR2. The tested values of mRNA transcription of CDR1 and CDR2 were higher than that of control strain, while the semi-quantified Cdr1p values were not higher in all of the 14 resistant isolates. And the data analyzed with t test suggest that both of the differences are significant (P < 0.0005) when the resistant isolates are considered as a whole. Cdr2p was up-regulated in 5 isolates, and down-regulated or even undetectable in the remaining 9 isolates. The transcription of ERG11, MDR1, and FLU1 varied in these isolates. These data suggested that overexpression of the five genes might not be the reason of resistance in the 14 isolates with G487T and T916C, especially in the 5 isolates (GZ09, GZ15, GZ16, GZ58, and 4263) in which neither translation of Cdr1p/Cdr2p nor transcription of ERG11, MDR1, or FLU1 was detected up-regulated. The results suggest that Erg11p conformational change due to the point mutations is most likely responsible for the azole resistance in these isolates.
    [Abstract] [Full Text] [Related] [New Search]