These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Catalytic activities of ultra-small β-FeOOH nanorods in ozonation of 4-chlorophenol.
    Author: Oputu O, Chowdhury M, Nyamayaro K, Fatoki O, Fester V.
    Journal: J Environ Sci (China); 2015 Sep 01; 35():83-90. PubMed ID: 26354696.
    Abstract:
    We report the catalytic properties of ultra-small β-FeOOH nanorods in ozonation of 4-chlorophenol (4-CP). XRD, TEM, EDS, SAED, FTIR and BET were used to characterize the prepared material. Interaction between O3 and β-FeOOH was evident from the FTIR spectra. The removal efficiency of 4-CP was significantly enhanced in the presence of β-FeOOH compared to ozone alone. Removal efficiency of 99% and 67% was achieved after 40min in the presence of combined ozone and catalyst and ozone only, respectively. Increasing catalyst load increased COD removal efficiency. Maximum COD removal of 97% was achieved using a catalyst load of 0.1g/100mL of 4-CP solution. Initial 4-CP concentration was not found to be rate limiting below 2×10(-3)mol/L. The catalytic properties of the material during ozonation process were found to be pronounced at lower initial pH of 3.5. Two stage first order kinetics was applied to describe the kinetic behavior of the nanorods at low pH. The first stage of catalytic ozonation was attributed to the heterogeneous surface breakdown of O3 by β-FeOOH, while the second stage was attributed to homogeneous catalysis initiated by reductive dissolution of β-FeOOH at low pH.
    [Abstract] [Full Text] [Related] [New Search]