These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Importance of the central nucleus of the amygdala on sodium intake caused by deactivation of lateral parabrachial nucleus. Author: Andrade-Franzé GM, Andrade CA, Gasparini S, De Luca LA, De Paula PM, Colombari DS, Colombari E, Menani JV. Journal: Brain Res; 2015 Nov 02; 1625():238-45. PubMed ID: 26358148. Abstract: The lateral parabrachial nucleus (LPBN) and the central nucleus of the amygdala (CeA) are important central areas for the control of sodium appetite. In the present study, we investigated the importance of the facilitatory mechanisms of the CeA on NaCl and water intake produced by the deactivation of LPBN inhibitory mechanisms. Male Holtzman rats (n=7-14) with stainless steel cannulas implanted bilaterally in the CeA and LPBN were used. Bilateral injections of moxonidine (α2-adrenoceptor/imidazoline agonist, 0.5 nmol/0.2 μl) into the LPBN increased furosemide+captopril-induced 0.3M NaCl (29.7 ± 7.2, vs. vehicle: 4.4 ± 1.6 ml/2h) and water intake (26.4 ± 6.7, vs. vehicle: 8.2 ± 1.6 ml/2h). The GABAA agonist muscimol (0.25 nmol/0.2 μl) injected bilaterally into the CeA abolished the effects of moxonidine into the LPBN on 0.3M NaCl (2.8 ± 1.6 ml/2h) and water intake (3.3 ± 2.3 ml/2h). Euhydrated rats treated with muscimol (0.5 nmol/0.2 μl) into the LPBN also ingested 0.3M NaCl (19.1 ± 6.4 ml/4h) and water (8.8 ± 3.2 ml/4h). Muscimol (0.5 nmol/0.2 μl) into the CeA also abolished 0.3M NaCl (0.1 ± 0.04 ml/4h) and water intake (0.1 ± 0.02 ml/4h) in euhydrated treated with muscimol into the LPBN. The present results show that neuronal deactivation of the CeA abolishes NaCl intake produced by the blockade of LPBN inhibitory mechanisms, suggesting an interaction between facilitatory mechanisms of the CeA and inhibitory mechanisms of the LPBN in the control of NaCl intake.[Abstract] [Full Text] [Related] [New Search]