These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Chemoenzymatic Kinetic resolution of (R)-malathion in aqueous media.
    Author: Enríquez-Núñez CA, Camacho-Dávila AA, Ramos-Sánchez VH, Zaragoza-Galán G, Ballinas-Casarrubias L, Chávez-Flores D.
    Journal: Chem Cent J; 2015; 9():46. PubMed ID: 26361495.
    Abstract:
    BACKGROUND: Malathion (R,S)-diethyl-2-[(dimethoxyphosphorothioyl)sulfanyl]butanedioate is a chiral organophosphorus compound used widely as pesticide for suppression of harmful insects such as mosquitoes. It is well known that in biological systems (R)-malathion is the active enantiomer, therefore a sustainable approach could be the use of only the biologically active enantiomer. The resolution of the commercial racemic mixture to obtain the pure active enantiomer combined with a recycling of the undesired enantiomer through a racemization process could be an attractive alternative to reduce the environmental impact of this pesticide. Thus, this work evaluates the use of four commercially available lipases for enantioselective hydrolysis and separation of malathion enantiomers from the commercial racemic mixture. RESULTS: Several lipases were methodologically assessed, considering parameters such as enzyme concentration, temperature and reaction rates. Among them, Candida rugosa lipase exhibited the best performance, in terms of enantioselectivity, E = 185 (selective to the (S)-enantiomer). In this way, the desired unreacted (R)-enantiomer was recovered in a 49.42 % yield with an enantiomeric excess of 87 %. The monohydrolized (S)-enantiomer was recovered and racemized in basic media, followed by esterification to obtain the racemic malathion, which was recycled. In this way, an enantioenriched mixture of (R)-malathion was obtained with a conversion of 65.80 % considering the recycled (S)-enantiomer. CONCLUSION: This work demonstrated the feasibility of exploiting Candida rugosa lipase to kinetically resolve racemic malathion through an environmentally friendly recycling of the undesired (S)-enantiomer. Graphical AbstractLipase catalyzed enantioselective resolution of (R)-malathion in aqueous solvent.
    [Abstract] [Full Text] [Related] [New Search]