These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Application of advanced machine learning methods on resting-state fMRI network for identification of mild cognitive impairment and Alzheimer's disease. Author: Khazaee A, Ebrahimzadeh A, Babajani-Feremi A. Journal: Brain Imaging Behav; 2016 Sep; 10(3):799-817. PubMed ID: 26363784. Abstract: The study of brain networks by resting-state functional magnetic resonance imaging (rs-fMRI) is a promising method for identifying patients with dementia from healthy controls (HC). Using graph theory, different aspects of the brain network can be efficiently characterized by calculating measures of integration and segregation. In this study, we combined a graph theoretical approach with advanced machine learning methods to study the brain network in 89 patients with mild cognitive impairment (MCI), 34 patients with Alzheimer's disease (AD), and 45 age-matched HC. The rs-fMRI connectivity matrix was constructed using a brain parcellation based on a 264 putative functional areas. Using the optimal features extracted from the graph measures, we were able to accurately classify three groups (i.e., HC, MCI, and AD) with accuracy of 88.4 %. We also investigated performance of our proposed method for a binary classification of a group (e.g., MCI) from two other groups (e.g., HC and AD). The classification accuracies for identifying HC from AD and MCI, AD from HC and MCI, and MCI from HC and AD, were 87.3, 97.5, and 72.0 %, respectively. In addition, results based on the parcellation of 264 regions were compared to that of the automated anatomical labeling atlas (AAL), consisted of 90 regions. The accuracy of classification of three groups using AAL was degraded to 83.2 %. Our results show that combining the graph measures with the machine learning approach, on the basis of the rs-fMRI connectivity analysis, may assist in diagnosis of AD and MCI.[Abstract] [Full Text] [Related] [New Search]