These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Icaritin Attenuates Myocardial Ischemia and Reperfusion Injury Via Anti-Inflammatory and Anti-Oxidative Stress Effects in Rats.
    Author: Zhang W, Xing B, Yang L, Shi J, Zhou X.
    Journal: Am J Chin Med; 2015; 43(6):1083-97. PubMed ID: 26364662.
    Abstract:
    Icaritin (ICT) is a traditional Chinese medicinal herb proved to be neuroprotective and exerts promoting effects on cardiac differentiation. However, its role in cardioprotection against myocardial ischemia/reperfusion (MI/R) injury remains largely unknown. This study aimed to investigate the effects of ICT treatment on MI/R injury and the underlying mechanisms. Rats were subjected to 30 min of myocardial ischemic insult followed by 3 h of reperfusion. ICT (3, 10, and 30 mg/kg) was administered intraperitoneally 10 min before reperfusion. ICT treatment at the dose of 10 and 30 mg/kg improved cardiac function and limited infarct size following MI/R. Meanwhile, ICT reduced plasma creatine kinase (CK), lactate dehydrogenase (LDH) activities and cardiomyocyte apoptosis in I/R heart tissue. Moreover, ICT treatment not only inhibited the pro-inflammatory cytokine TNF-α production and increased the anti-inflammatory cytokine IL-10 level in myocardium but also reduced the increase in the generation of superoxide content and malondialdehyde (MDA) formation and simultaneously increased the anti-oxidant capability in I/R hearts. Furthermore, ICT treatment increased Akt phosphorylation and inhibited PTEN expression in I/R hearts. PI3K inhibitor wortmannin inhibited ICT-enhanced Akt phosphorylation, and blunted ICT-mediated anti-oxidative and anti-inflammatory effects and cardioprotection. Our study indicated for the first time that ICT reduces inflammation and oxidative stress and protects against MI/R injury in rats, which might be via a PI3K-Akt-dependent mechanism.
    [Abstract] [Full Text] [Related] [New Search]