These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Grouping of multicopper oxidases in Lentinula edodes by sequence similarities and expression patterns.
    Author: Sakamoto Y, Nakade K, Yoshida K, Natsume S, Miyazaki K, Sato S, van Peer AF, Konno N.
    Journal: AMB Express; 2015 Dec; 5(1):63. PubMed ID: 26384343.
    Abstract:
    The edible white rot fungus Lentinula edodes possesses a variety of lignin degrading enzymes such as manganese peroxidases and laccases. Laccases belong to the multicopper oxidases, which have a wide range of catalytic activities including polyphenol degradation and synthesis, lignin degradation, and melanin formation. The exact number of laccases in L. edodes is unknown, as are their complete properties and biological functions. We analyzed the draft genome sequence of L. edodes D703PP-9 and identified 13 multicopper oxidase-encoding genes; 11 laccases in sensu stricto, of which three are new, and two ferroxidases. lcc8, a laccase previously reported in L. edodes, was not identified in D703PP-9 genome. Phylogenetic analysis showed that the 13 multicopper oxidases can be classified into laccase sensu stricto subfamily 1, laccase sensu stricto subfamily 2 and ferroxidases. From sequence similarities and expression patterns, laccase sensu stricto subfamily 1 can be divided into two subgroups. Laccase sensu stricto subfamily 1 group A members are mainly secreted from mycelia, while laccase sensu stricto subfamily 1 group B members are expressed mainly in fruiting bodies during growth or after harvesting but are lowly expressed in mycelia. Laccase sensu stricto subfamily 2 members are mainly expressed in mycelia, and two ferroxidases are mainly expressed in the fruiting body during growth or after harvesting, and are expressed at very low levels in mycelium. Our data suggests that L. edodes laccases in same group share expression patterns and would have common biological functions.
    [Abstract] [Full Text] [Related] [New Search]