These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The PI3K/AKT cell signaling pathway is involved in regulation of osteoporosis. Author: Xi JC, Zang HY, Guo LX, Xue HB, Liu XD, Bai YB, Ma YZ. Journal: J Recept Signal Transduct Res; 2015; 35(6):640-5. PubMed ID: 26390889. Abstract: BACKGROUND: Osteoporosis is a systemic skeletal disease with the high incidence, serious complications, financial burden, and heavily decrease in living quality. METHODS: Proliferation of osteoblast was tested by 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) method, alkaline phosphatase (ALP) activity of osteoblasts was tested by ALP REAGENT, Calcium level was determined by a colorimetric assay, mRNA expression of phosphoinositide-3 kinase (PI3K), 3-phosphoinositide-dependent protein kinase 1 (PDK1), Akt, Caspase-3, Caspase-7, Caspase-9, osteocalcin (OCN), Osterix and Runx2 of osteoblasts was tested by RNA preparation and quantitative reverse transcription polymerase chain reaction (RT-PCR), and protein expression of phospho-PI3K, phospho-PDK1 and phospho-Akt was measured by Western Blot analysis. RESULTS: In osteoporosis model rats, it found that mRNA expression of PI3K, PDK1 and Akt showed no changes while protein expression of phospho-PI3K, phospho-PDK1 and phospho-Akt in bone tissue was decreased dramatically. To further characterize the molecular mechanisms that regulate osteoporosis, we examined the contribution of the PI3K/Akt cell signaling pathway in cultured osteoblasts. It suggested that, the blockade of PI3K activation by LY294002, a specific inhibitor of the PI3K/Akt signaling pathway in osteoblasts, heavily inhibited cell proliferation, ALP activity, calcium accumulation, and mRNA expression of OCN, Osterix and Runx2. However, mRNA expression of Caspase-3 and Caspase-9 was promoted accordingly. CONCLUSION: The in vivo and in vitro studies indicated that the PI3K/Akt cell signaling pathway is involved in the inhibition of osteoporosis through promoting osteoblast proliferation, differentiation and bone formation.[Abstract] [Full Text] [Related] [New Search]