These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mesophilic anaerobic digestion of pulp and paper industry biosludge-long-term reactor performance and effects of thermal pretreatment.
    Author: Kinnunen V, Ylä-Outinen A, Rintala J.
    Journal: Water Res; 2015 Dec 15; 87():105-11. PubMed ID: 26397452.
    Abstract:
    The pulp and paper industry wastewater treatment processes produce large volumes of biosludge. Limited anaerobic degradation of lignocellulose has hindered the utilization of biosludge, but the processing of biosludge using anaerobic digestion has recently regained interest. In this study, biosludge was used as a sole substrate in long-term (400 d) mesophilic laboratory reactor trials. Nine biosludge batches collected evenly over a period of one year from a pulp and paper industry wastewater treatment plant had different solid and nutrient (nitrogen, phosphorus, trace elements) characteristics. Nutrient characteristics may vary by a factor of 2-11, while biomethane potentials (BMPs) ranged from 89 to 102 NL CH4 kg(-1) VS between batches. The BMPs were enhanced by 39-88% with thermal pretreatments at 105-134 °C. Despite varying biosludge properties, stable operation was achieved in reactor trials with a hydraulic retention time (HRT) of 14 d. Hydrolysis was the process limiting step, ceasing gas production when the HRT was shortened to 10 days. However, digestion with an HRT of 10 days was feasible after thermal pretreatment of the biosludge (20 min at 121 °C) due to enhanced hydrolysis. The methane yield was 78 NL CH4 kg(-1) VS for untreated biosludge and was increased by 77% (138 NL CH4 kg(-1) VS) after pretreatment.
    [Abstract] [Full Text] [Related] [New Search]