These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Relationship between sodium-dependent phosphate transporter (NaPi-IIc) function and cellular vacuole formation in opossum kidney cells. Author: Shiozaki Y, Segawa H, Ohnishi S, Ohi A, Ito M, Kaneko I, Kido S, Tatsumi S, Miyamoto K. Journal: J Med Invest; 2015; 62(3-4):209-18. PubMed ID: 26399350. Abstract: NaPi-IIc/SLC34A3 is a sodium-dependent inorganic phosphate (Pi) transporter in the renal proximal tubules and its mutations cause hereditary hypophosphatemic rickets with hypercalciuria (HHRH). In the present study, we created a specific antibody for opossum SLC34A3, NaPi-IIc (oNaPi-IIc), and analyzed its localization and regulation in opossum kidney cells (a tissue culture model of proximal tubular cells). Immunoreactive oNaPi-IIc protein levels increased during the proliferative phase and decreased during differentiation. Moreover, stimulating cell growth upregulated oNaPi-IIc protein levels, whereas suppressing cell proliferation downregulated oNaPi-IIc protein levels. Immunocytochemistry revealed that endogenous and exogenous oNaPi-IIc proteins localized at the protrusion of the plasma membrane, which is a phosphatidylinositol 4,5-bisphosphate (PIP2) rich-membrane, and at the intracellular vacuolar membrane. Exogenous NaPi-IIc also induced cellular vacuoles and localized in the plasma membrane. The ability to form vacuoles is specific to electroneutral NaPi-IIc, and not electrogenic NaPi-IIa or NaPi-IIb. In addition, mutations of NaPi-IIc (S138F and R468W) in HHRH did not cause cellular PIP2-rich vacuoles. In conclusion, our data anticipate that NaPi-IIc may regulate PIP2 production at the plasma membrane and cellular vesicle formation.[Abstract] [Full Text] [Related] [New Search]