These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Long-term metabolic correction of Wilson's disease in a murine model by gene therapy. Author: Murillo O, Luqui DM, Gazquez C, Martinez-Espartosa D, Navarro-Blasco I, Monreal JI, Guembe L, Moreno-Cermeño A, Corrales FJ, Prieto J, Hernandez-Alcoceba R, Gonzalez-Aseguinolaza G. Journal: J Hepatol; 2016 Feb; 64(2):419-426. PubMed ID: 26409215. Abstract: BACKGROUND & AIMS: Wilson's disease (WD) is an autosomal recessively inherited copper storage disorder due to mutations in the ATP7B gene that causes hepatic and neurologic symptoms. Current treatments are based on lifelong copper chelating drugs and zinc salts, which may cause side effects and do not restore normal copper metabolism. In this work we assessed the efficacy of gene therapy to treat this condition. METHODS: We transduced the liver of the Atp7b(-/-) WD mouse model with an adeno-associated vector serotype 8 (AAV8) encoding the human ATP7B cDNA placed under the control of the liver-specific α1-antitrypsin promoter (AAV8-AAT-ATP7B). After vector administration we carried out periodic evaluation of parameters associated with copper metabolism and disease progression. The animals were sacrificed 6months after treatment to analyze copper storage and hepatic histology. RESULTS: We observed a dose-dependent therapeutic effect of AAV8-AAT-ATP7B manifested by the reduction of serum transaminases and urinary copper excretion, normalization of serum holoceruloplasmin, and restoration of physiological biliary copper excretion in response to copper overload. The liver of treated animals showed normalization of copper content and absence of histological alterations. CONCLUSIONS: Our data demonstrate that AAV8-AAT-ATP7B-mediated gene therapy provides long-term correction of copper metabolism in a clinically relevant animal model of WD providing support for future translational studies.[Abstract] [Full Text] [Related] [New Search]