These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Scavenging of black carbon in Chilean coastal fogs. Author: Heintzenberg J, Cereceda-Balic F, Vidal V, Leck C. Journal: Sci Total Environ; 2016 Jan 15; 541():341-347. PubMed ID: 26410708. Abstract: In November/December 2013 a pilot experiment on aerosol/fog interaction was conducted on a coastal hill in the suburbs of Valparaíso, Chile. Passages of garúa fog were monitored with continuous recordings of a soot photometer and an optical aerosol spectrometer. An optical fog sensor and an automatic weather station provided meteorological data with which the aerosol could be classified. High-resolution back trajectories added meteorological information. From filter samples, optical and chemical aerosol information was derived. Scavenging coefficients of black carbon (BC) and measured particulate mass below 1 μm diameter (PM1) were estimated with three approaches. Averaging over all fog periods of the campaign yielded a scavenging coefficient of only 6% for BC and 40% for PM1. Dividing the data into four 90°-wind sectors gave scavenging factors for BC ranging from 13% over the Valparaíso, Viña del Mar conurbation to 50% in the marine sector (180°-270°). The third, and independent approach was achieved with two pairs of chemical aerosol samples taken inside and outside fogs, which yielded a scavenging coefficient of 25% for BC and 70% for nonseasalt sulfate. Whereas fogs occurred rather infrequently in the beginning of the campaign highly regular daily fog cycles appeared towards the end of the experiment, which allowed the calculation of typical diurnal cycles of the aerosol in relation to a fog passage.[Abstract] [Full Text] [Related] [New Search]