These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Preameloblast-Derived Factors Mediate Osteoblast Differentiation of Human Bone Marrow Mesenchymal Stem Cells by Runx2-Osterix-BSP Signaling. Author: Choung HW, Lee DS, Lee HK, Shon WJ, Park JC. Journal: Tissue Eng Part A; 2016 Jan; 22(1-2):93-102. PubMed ID: 26413977. Abstract: Epithelial-mesenchymal interaction occurs during development of various tissues, including teeth and bone. Recently, a preameloblast-conditioned medium (PA-CM) from mouse apical bud cells (ABCs), a type of dental epithelial cell, was found to induce odontogenic differentiation of dental pulp stem cells and promote dentin formation. The aims of the present study were to investigate the effects of PA-CM on human bone marrow mesenchymal stem cells (hBMSCs) in vitro, and to investigate the bone regenerative capacity in vivo through epithelial-mesenchymal interactions of developmental osteogenesis. Coculturing with ABCs and PA-CM treatment upregulated osteoblast differentiation markers of hBMSCs compared to cells cultured alone. PA-CM accelerated mineralized nodule formation and also increased bone sialoprotein promoter activity in hBMSCs. PA-CM facilitated the migration of hBMSCs, but did not significantly influence proliferation. PA-CM promoted bone formation of hBMSCs in vivo. Radiographic and histologic findings showed that PA-CM induced the bony regeneration at calvarial defects in rat. Taken together, these data show that PA-CM enhances the migration and osteogenic differentiation of hBMSCs in vitro and induces bone formation in vivo.[Abstract] [Full Text] [Related] [New Search]