These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of substrate structure on the kinetics of circle opening reactions of the self-splicing intervening sequence from Tetrahymena thermophila: evidence for substrate and Mg2+ binding interactions. Author: Sugimoto N, Tomka M, Kierzek R, Bevilacqua PC, Turner DH. Journal: Nucleic Acids Res; 1989 Jan 11; 17(1):355-71. PubMed ID: 2643083. Abstract: The self-splicing intervening sequence from the precursor rRNA of Tetrahymena thermophila cyclizes to form a covalently closed circle. This circle can be reopened by reaction with oligonucleotides or water. The kinetics of circle opening as a function of substrate and Mg2+ concentrations have been measured for dCrU, rCdU, dCdT, and H2O addition. Comparisons with previous results for rCrU suggest: (1) the 2' OH of the 5' sugar of a dinucleoside phosphate is involved in substrate binding, and (2) the 2' OH of the 3' sugar of a dimer substrate is involved in Mg2+ binding. Evidently, the binding site for a required Mg2+ ion is dependent on both the ribozyme and the dimer substrate. The apparent activation energy and entropy for circle opening by hydrolysis are 31 kcal/mol and 50 eu, respectively. The large, positive activation entropy suggests a partial unfolding of the ribozyme is required for reaction.[Abstract] [Full Text] [Related] [New Search]