These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Growing neuronal islands on multi-electrode arrays using an accurate positioning-μCP device. Author: Samhaber R, Schottdorf M, El Hady A, Bröking K, Daus A, Thielemann C, Stühmer W, Wolf F. Journal: J Neurosci Methods; 2016 Jan 15; 257():194-203. PubMed ID: 26432934. Abstract: BACKGROUND: Multi-electrode arrays (MEAs) allow non-invasive multi-unit recording in-vitro from cultured neuronal networks. For sufficient neuronal growth and adhesion on such MEAs, substrate preparation is required. Plating of dissociated neurons on a uniformly prepared MEA's surface results in the formation of spatially extended random networks with substantial inter-sample variability. Such cultures are not optimally suited to study the relationship between defined structure and dynamics in neuronal networks. To overcome these shortcomings, neurons can be cultured with pre-defined topology by spatially structured surface modification. Spatially structuring a MEA surface accurately and reproducibly with the equipment of a typical cell-culture laboratory is challenging. NEW METHOD: In this paper, we present a novel approach utilizing micro-contact printing (μCP) combined with a custom-made device to accurately position patterns on MEAs with high precision. We call this technique AP-μCP (accurate positioning micro-contact printing). COMPARISON WITH EXISTING METHODS: Other approaches presented in the literature using μCP for patterning either relied on facilities or techniques not readily available in a standard cell culture laboratory, or they did not specify means of precise pattern positioning. CONCLUSION: Here we present a relatively simple device for reproducible and precise patterning in a standard cell-culture laboratory setting. The patterned neuronal islands on MEAs provide a basis for high throughput electrophysiology to study the dynamics of single neurons and neuronal networks.[Abstract] [Full Text] [Related] [New Search]