These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: High-risk plaque features can be detected in non-stenotic carotid plaques of patients with ischaemic stroke classified as cryptogenic using combined (18)F-FDG PET/MR imaging. Author: Hyafil F, Schindler A, Sepp D, Obenhuber T, Bayer-Karpinska A, Boeckh-Behrens T, Höhn S, Hacker M, Nekolla SG, Rominger A, Dichgans M, Schwaiger M, Saam T, Poppert H. Journal: Eur J Nucl Med Mol Imaging; 2016 Feb; 43(2):270-279. PubMed ID: 26433367. Abstract: PURPOSE: The aim of this study was to investigate in 18 patients with ischaemic stroke classified as cryptogenic and presenting non-stenotic carotid atherosclerotic plaques the morphological and biological aspects of these plaques with magnetic resonance imaging (MRI) and (18)F-fluoro-deoxyglucose positron emission tomography ((18)F-FDG PET) imaging. METHODS: Carotid arteries were imaged 150 min after injection of (18)F-FDG with a combined PET/MRI system. American Heart Association (AHA) lesion type and plaque composition were determined on consecutive MRI axial sections (n = 460) in both carotid arteries. (18)F-FDG uptake in carotid arteries was quantified using tissue to background ratio (TBR) on corresponding PET sections. RESULTS: The prevalence of complicated atherosclerotic plaques (AHA lesion type VI) detected with high-resolution MRI was significantly higher in the carotid artery ipsilateral to the ischaemic stroke as compared to the contralateral side (39 vs 0 %; p = 0.001). For all other AHA lesion types, no significant differences were found between ipsilateral and contralateral sides. In addition, atherosclerotic plaques classified as high-risk lesions with MRI (AHA lesion type VI) were associated with higher (18)F-FDG uptake in comparison with other AHA lesions (TBR = 3.43 ± 1.13 vs 2.41 ± 0.84, respectively; p < 0.001). Furthermore, patients presenting at least one complicated lesion (AHA lesion type VI) with MRI showed significantly higher (18)F-FDG uptake in both carotid arteries (ipsilateral and contralateral to the stroke) in comparison with carotid arteries of patients showing no complicated lesion with MRI (mean TBR = 3.18 ± 1.26 and 2.80 ± 0.94 vs 2.19 ± 0.57, respectively; p < 0.05) in favour of a diffuse inflammatory process along both carotid arteries associated with complicated plaques. CONCLUSION: Morphological and biological features of high-risk plaques can be detected with (18)F-FDG PET/MRI in non-stenotic atherosclerotic plaques ipsilateral to the stroke, suggesting a causal role for these plaques in stroke. Combined (18)F-FDG PET/MRI systems might help in the evaluation of patients with ischaemic stroke classified as cryptogenic.[Abstract] [Full Text] [Related] [New Search]