These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Sorption and degradation of carbaryl in soils amended with biochars: influence of biochar type and content.
    Author: Ren X, Zhang P, Zhao L, Sun H.
    Journal: Environ Sci Pollut Res Int; 2016 Feb; 23(3):2724-34. PubMed ID: 26438372.
    Abstract:
    Biochars that were produced from three different biomass materials were amended to a soil to elucidate their influence on the fate of carbaryl. Sorption and degradation of carbaryl in soils amended with the biochars were investigated. The results showed that the amendment of biochars to soil enhanced the sorption of carbaryl. The nonlinearity of sorption isotherm and sorption affinity of carbaryl increased with the content and pyrolytic temperature of the biochars. Both chemical and biological degradation of carbaryl were influenced by biochars. The biochars enhanced the chemical hydrolysis of carbaryl in soil, with biochars produced at 700 °C (BC700) exhibiting greater impact, due to their strong liming effect. In contrast, BC350 (produced at 350 °C) promoted the biodegradation of carbaryl in soil by different extents, while BC700 obviously reduced the biodegradation of carbaryl. The enhanced activities of natural microorganisms in the soil and the lowered bioavailability of carbaryl acted together to determine the biodegradation.
    [Abstract] [Full Text] [Related] [New Search]