These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Blockade of KCa3.1 potassium channels protects against cisplatin-induced acute kidney injury. Author: Chen CL, Liao JW, Hu OY, Pao LH. Journal: Arch Toxicol; 2016 Sep; 90(9):2249-2260. PubMed ID: 26438401. Abstract: Tubular cell apoptosis significantly contributes to cisplatin-induced acute kidney injury (AKI) pathogenesis. Although KCa3.1, a calcium-activated potassium channel, participates in apoptosis, its involvement in cisplatin-induced AKI is unknown. Here, we found that cisplatin treatment triggered an early induction of KCa3.1 expression associated with HK-2 cell apoptosis, the development of renal tubular damage, and apoptosis in mice. Treatment with the highly selective KCa3.1 blocker TRAM-34 suppressed cisplatin-induced HK-2 cell apoptosis. We further assessed whether KCa3.1 mediated cisplatin-induced AKI in genetic knockout and pharmacological blockade mouse models. KCa3.1 deficiency reduced renal function loss, renal tubular damage, and the induction of the apoptotic marker caspase-3 in the kidneys of cisplatin-treated KCa3.1 (-/-) mice. Pharmacological blockade of KCa3.1 by TRAM-34 similarly attenuated cisplatin-induced AKI in mice. Furthermore, we dissected the mechanisms underlying cisplatin-induced apoptosis reduction via KCa3.1 blockade. We found that KCa3.1 blockade attenuated cytochrome c release and the increase in the intrinsic apoptotic mediators Bax, Bak, and caspase-9 after cisplatin treatment. KCa3.1 blocking inhibited the cisplatin-induced activation of the endoplasmic reticulum (ER) stress mediator caspase-12, which is independent of calcium-dependent protease m-calpain activation. Taken together, KCa3.1 blockade protects against cisplatin-induced AKI through the attenuation of apoptosis by interference with intrinsic apoptotic and ER stress-related mediators, providing a potential target for the prevention of cisplatin-induced AKI.[Abstract] [Full Text] [Related] [New Search]