These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Role of mannose-binding lectin in intestinal homeostasis and fungal elimination. Author: Choteau L, Parny M, François N, Bertin B, Fumery M, Dubuquoy L, Takahashi K, Colombel JF, Jouault T, Poulain D, Sendid B, Jawhara S. Journal: Mucosal Immunol; 2016 May; 9(3):767-76. PubMed ID: 26442658. Abstract: Mannose-binding lectin (MBL) is a soluble lectin of the innate immune system that is produced by the liver and secreted into the circulation where it activates the lectin complement pathway, enhances phagocytosis of microorganisms by leukocytes, and modulates inflammation. MBL can recognize patterns on the surface of different pathogens, including Candida albicans. Our aims were to investigate whether MBL is expressed in the gut epithelium and to examine its effect on the modulation of intestinal inflammation and C. albicans elimination. Using reverse transcriptase-PCR, MBL transcripts were highly expressed in different parts of the mouse gut. MBL expression was also detected by immunoblotting and immunolocalization in response to C. albicans colonization of the gut; the highest expression of MBL was detected in the stomach. Blocking MBL by administering mannans to mice increased C. albicans colonization. MBL-deficient mice had a higher level of colonization than wild-type mice. Dextran sodium sulfate-induced colitis promoted C. albicans dissemination to the kidneys and lungs of MBL-deficient mice. MBL-deficient mice exhibited elevated expression of interleukin (IL)-17, IL-23, dectin-1, and Toll-like receptor-4. This study shows that MBL expression is induced in the gut in response to C. albicans sensing and is required for intestinal homeostasis and host defense against C. albicans.[Abstract] [Full Text] [Related] [New Search]