These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Bufalin Inhibits NCI-H460 Human Lung Cancer Cell Metastasis In Vitro by Inhibiting MAPKs, MMPs, and NF-κB Pathways.
    Author: Wu SH, Hsiao YT, Kuo CL, Yu FS, Hsu SC, Wu PP, Chen JC, Hsia TC, Liu HC, Hsu WH, Chung JG.
    Journal: Am J Chin Med; 2015; 43(6):1247-64. PubMed ID: 26446205.
    Abstract:
    Bufalin, a component of Chan Su (a traditional Chinese medicine), has been known to have antitumor effects for thousands of years. In this study, we investigated its anti-metastasis effects on NCI-H460 lung cancer cells. Under sub-lethal concentrations (from 25 up to 100 nM), bufalin significantly inhibits the invasion and migration nature of NCI-H460 cells that were measured by Matrigel Cell Migration Assay and Invasion System. Bufalin also suppressed the enzymatic activity of matrix metalloproteinase (MMP)-9, which was examined by gelatin zymography methods. Western blotting revealed that bufalin depressed several key metastasis-related proteins, such as NF-κB, MMP-2, MMP-9, protein kinase C (PKC), phosphatidylinositol 3-kinase (PI3-K), phosphorylated Akt, growth factor receptor-bound protein 2 (GRB2), phosphorylated extracellular signal-regulated kinase (ERK), phosphorylated p38, and phosphorylated c-Jun NH2-terminal kinase (JNK). As evidenced by immunostaining and the electrophoretic mobility shift assay (EMSA), bufalin induced not only a decreased cytoplasmic NF-κB production, but also decreased its nuclear translocation. Several metastasis-related genes, including Rho-associated (Rho A), coiled-coil-containing protein kinase 1 (ROCK1), and focal adhesion kinase (FAK), were down-regulated after bufalin treatment. In conclusion, bufalin is effective in inhibiting the metastatic nature of NCI-H460 cells in low, sub-lethal concentrations. Such an effect involves many mechanisms including MMPs, mitogen-activated protein kinases (MAPKs) and NF-κB systems. Bufalin has a potential to evolve into an anti-metastasis drug for human lung cancer in the future.
    [Abstract] [Full Text] [Related] [New Search]