These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Half-Life of Sulfonylureas in HNF1A and HNF4A Human MODY Patients is not Prolonged as Suggested by the Mouse Hnf1a(-/-) Model. Author: Urbanova J, Andel M, Potockova J, Klima J, Macek J, Ptacek P, Mat'oska V, Kumstyrova T, Heneberg P. Journal: Curr Pharm Des; 2015; 21(39):5736-48. PubMed ID: 26446475. Abstract: OBJECTIVES: Sulfonylurea derivatives are widely used for clinical treatment of human subjects with Maturity Onset Diabetes of the Young (MODY) caused by mutations in HNF-1α or HNF-4α despite the mechanism leading to their hypersensitivity is incompletely understood. In Hnf1a(-/-) mice, serum concentrations and half-life of sulfonylurea derivatives are strongly increased. We thus hypothesized that reduced sulfonylurea derivatives clearance stands behind their therapeutic potential in human HNF1A/HNF4A MODY subjects. DESIGN AND METHODS: Single doses of 3 mg glipizide and 5 mg glibenclamide/glyburide were administered sequentially to seven HNF1A/HNF4A MODY subjects and six control individuals matched for their age, BMI and CYP2C9 genotype. Pharmacokinetic (plasma concentration levels, Cmax, tmax, t1/2, AUC) and pharmacodynamic parameters (glycemia, C-peptide and insulin plasma levels) were followed for 24 hours after drug administration. RESULTS: We provide the first evidence on the pharmacokinetics and pharmacodynamics of sulfonylurea derivatives in human MODY subjects. The half-life of glipizide did not change, and reached 3.8±0.7 and 3.7±1.8 h in the MODY and control subjects, respectively. The half-life of glibenclamide was increased only in some MODY subjects (t1/2 9.5±6.7 and 5.0±1.4 h, respectively). Importantly, the intra- individual responses of MODY (but control) subjects to glipizide and glibenclamide treatment were highly correlated. With regards to pharmacodynamics, we observed a differential response of control but not MODY subjects to the doses of glipizide and glibenclamide applied. CONCLUSIONS: We rejected the hypothesis that all human MODY-associated mutations in HNF1A / HNF4A induce changes in the pharmacokinetics of sulfonylureas in humans analogically to the Hnf1a(-/-) mouse model.[Abstract] [Full Text] [Related] [New Search]