These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Synthesis and antioxidant property of novel 1,2,3-triazole-linked starch derivatives via 'click chemistry'. Author: Tan W, Li Q, Li W, Dong F, Guo Z. Journal: Int J Biol Macromol; 2016 Jan; 82():404-10. PubMed ID: 26449530. Abstract: Based on the copper (I) catalyzed Huisgen azide-alkyne cycloaddition (click chemistry), the novel synthesis of a variety of 1,2,3-triazole-linked starch derivatives was developed, including 6-hydroxymethyltriazole-6-deoxy starch (HMTST), 6-hydroxyethyltriazole-6-deoxy starch (HETST), 6-hydroxypropyltriazole-6-deoxy starch (HPTST), and 6-hydroxybutyltriazole-6-deoxy starch (HBTST). Their antioxidant properties against hydroxyl-radical, DPPH-radical, and superoxide-radical were evaluated in vitro, respectively. The antioxidant activity of the obtained novel amphiprotic starch derivatives via 'click reaction' exhibited remarkable improvement over starch. And the scavenging effect indices of most of the products were higher than 60% at 1.6 mg/mL against hydroxyl-radical and DPPH-radical. Moreover, the scavenging effect of the products against superoxide-radical attained 90% above at 0.1mg/mL. Generally, the antioxidant activity decreased in the order: HBTST>HPTST>HETST>HMTST>starch. Furthermore, the order of their antioxidant activity was consistent with the electron-donating ability of different substituted groups of the 1,2,3-triazoles. The substituted groups with stronger electron supplying capacity provided more electrons to the various radicals, which relatively enhanced the capacity for scavenging free radicals.[Abstract] [Full Text] [Related] [New Search]