These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Recursive identification of an arterial baroreflex model for the evaluation of cardiovascular autonomic modulation.
    Author: Le Rolle V, Beuchee A, Praud JP, Samson N, Pladys P, Hernández AI.
    Journal: Comput Biol Med; 2015 Nov 01; 66():287-94. PubMed ID: 26453759.
    Abstract:
    The evaluation of the time-varying vagal and sympathetic contributions to heart rate remains a challenging task because the observability of the baroreflex is generally limited and the time-varying properties are difficult to take into account, especially in non-stationnary conditions. The objective is to propose a model-based approach to estimate the autonomic modulation during a pharmacological challenge. A recursive parameter identification method is proposed and applied to a mathematical model of the baroreflex, in order to estimate the time-varying vagal and sympathetic contributions to heart rate modulation during autonomic maneuvers. The model-based method was evaluated with data from five newborn lambs, which were acquired during injection of vasodilator and vasoconstrictor drugs, on normal conditions and under beta-blockers, so as to quantify the effect of the pharmacological sympathetic blockade on the estimated parameters. After parameter identification, results show a close match between experimental and simulated signals for the five lambs, as the mean relative root mean squared error is equal to 0.0026 (± 0.003). The error, between simulated and experimental signals, is significantly reduced compared to a batch identification of parameters. The model-based estimation of vagal and sympathetic contributions were consistent with physiological knowledge and, as expected, it was possible to observe an alteration of the sympathetic response under beta-blockers. The simulated vagal modulation illustrates a response similar to traditional heart rate variability markers during the pharmacological maneuver. The model-based method, proposed in the paper, highlights the advantages of using a recursive identification method for the estimation of vagal and sympathetic modulation.
    [Abstract] [Full Text] [Related] [New Search]