These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [CHONDROGENESIS-SPECIFIC MICRORNA EXPRESSION PATTERN ANALYSIS IN CHONDROGENIC DIFFERENTIATION OF HUMAN ADIPOSE-DERIVED STEM CELLS]. Author: Zhang Z, Kang Y, Zhang Z, Yang Z, Fang S, Sheng P, He A, Fu M, Liao W. Journal: Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2015 Jan; 29(1):74-80. PubMed ID: 26455177. Abstract: OBJECTIVE: To investigate the microRNA (miRNA) expression profile during chondrogenic differentiation of human adipose-derived stem cells (hADSCs), and assess the roles of involved miRNAs during chondrogenesis. METHODS: hADSCs were harvested and cultured from donors who underwent elective liposuction or other abdominal surgery. When the cells were passaged to P3, chondrogenic induction medium was used for chondrogenic differentiation. The morphology of the cells was observed by inverted phase contrast microscopy. Alcian blue staining was carried out at 21 days after induction to access the chondrogenic status. The expressions of chondrogenic proteins were detected by ELISA at 0, 7, 14, and 21 days. The miRNA expression profiles at pre- and post-chondrogenic induction were obtained by microarray assay, and differentially expressed miRNAs were verified by real-time quantitative PCR (qRT-PCR). The targets of the miRNAs were predicted by online software programs. RESULTS: hADSCs were cultured successfully and induced with chondrogenic medium. At 21 days after chondrogenic induction, the cells were stained positively for alcian blue staining. At 7, 14, and 21 days after chondrogenic induction, the levels of collogen type II, Col2a1, aggrecan, Coll0a1, and chondroitin sulfate in induced hADSCs were significantly higher than those in non-induced hADSCs (P<0.05). Eleven differentially expressed miRNAs were found, including seven up-regulated and four down-regulated. Predicted target genes of the differentially expressed miRNAs were based on the overlap from three public prediction algorithms, with the known functions of regulating chondrogenic differentiation of stem cells, self-renewal, signal transduction, intracellular signaling cascade, and cell cycle control. CONCLUSION: A group of miRNAs and their target genes are identified, which may play important roles in regulating chondrogenic differentiation of hADSCs. These results will facilitate the initial understanding of the molecular mechanism of chondrogenic differentiation in hADSCs and subsequently control hADSCs differentiation, and provide high performance seed cells for cartilage tissue engineering.[Abstract] [Full Text] [Related] [New Search]