These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Roxithromycin-loaded lipid nanoparticles for follicular targeting. Author: Wosicka-Frąckowiak H, Cal K, Stefanowska J, Główka E, Nowacka M, Struck-Lewicka W, Govedarica B, Pasikowska M, Dębowska R, Jesionowski T, Srčič S, Markuszewski MJ. Journal: Int J Pharm; 2015 Nov 30; 495(2):807-15. PubMed ID: 26456292. Abstract: Particulate drug carriers e.g. nanoparticles (NPs) have been shown to penetrate and accumulate preferentially in skin hair follicles creating high local concentration of a drug. In order to develop such a follicle targeting system we obtained and characterized solid lipid nanoparticles (SLN) loaded with roxithromycin (ROX). The mean particle size (172±2 nm), polydisperisty index (0.237±0.007), zeta potential (-31.68±3.10 mV) and incorporation efficiency (82.1±3.0%) were measured. The long term stability of ROX-loaded SLN suspensions was proved up to 26 weeks. In vitro drug release study was performed using apparatus 4 dialysis adapters. Skin irritation test conducted using the EpiDerm™ tissue model demonstrated no irritation potential for ROX-loaded SLN. Ex vivo human skin penetration studies, employing rhodamine B hexyl ester perchlorate (RBHE) as a fluorescent dye to label the particles, revealed fluorescence deep in the skin, specifically around the hair follicles up to over 1mm depth. The comparison of fluorescence intensities after application of RBHE solution and RBHE-labelled ROX-loaded SLN was done. Then cyanoacrylate follicular biopsies were obtained in vivo and analyzed for ROX content, proving the possibility of penetration to human pilosebaceous units and delivering ROX by using SLN with the size below 200 nm.[Abstract] [Full Text] [Related] [New Search]