These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A soluble ATP-dependent proteolytic system responsible for the degradation of abnormal proteins in reticulocytes.
    Author: Etlinger JD, Goldberg AL.
    Journal: Proc Natl Acad Sci U S A; 1977 Jan; 74(1):54-8. PubMed ID: 264694.
    Abstract:
    Reticulocytes, like other cells, selectively degrade certain abnormal proteins by an energy-dependent process. When isolated rabbit reticulocytes incorporate the valine analog 2-amino-3chlorobutyric acid (ClAbu) in place of valine, they produce an abnormal globin that is degraded with a half-life of 15 min. Normal hemoglobin, in contrast, undergoes little or no breakdown within these cells. Cell-free extracts from reticulocytes have been shown to rapidly hydrolyze these abnormal proteins. The degradative system is located in the 100,000 X g supernatant, has a pH optimum of 7.8, and does not appear to be of lysosomal origin. This breakdown of analog-containing protein was stimulated severalfold by ATP, and slightly by ADP. AMP and adenosine-3':5'-cyclic monophosphate had no significant effect on proteolysis. Experiments with ATP analogs suggest that the terminal high energy phosphate is important in the degradative process. Proteolysis in the cell-free system and in intact reticulocytes was inhibited by the same agents (L-l-tosylamido-2-phenyl-ethylchloromethyl ketone, N-alpha-p-tosyl-L-lysine chloromethyl ketone, N-ethylmaleimide, iodoacetamide, and o-phenanthroline). In addition, the relative rates of degradation of several polypeptides in the cell-free extracts paralleled degradatives rates within cells. Thus, a soluble nonlysosomal proteolytic system appears responsible for the energy-dependent degradation of abnormal proteins in reticulocytes.
    [Abstract] [Full Text] [Related] [New Search]