These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Interactions of TPA and insulin on Na+ transport across frog skin.
    Author: Civan MM, Peterson-Yantorno K, George K, O'Brien TG.
    Journal: Am J Physiol; 1989 Mar; 256(3 Pt 1):C569-78. PubMed ID: 2646943.
    Abstract:
    The phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) activates protein kinase C (PKC) and produces an early stimulation of Na+ transport across frog skin. The ionic basis for this stimulation was studied with combined transepithelial and intracellular electrical measurements. In an initial series of experiments, TPA approximately doubled the amiloride-sensitive short-circuit current (ISC), apical Na+ permeability (PapNa), and apical membrane conductance without affecting the basolateral membrane conductance. The apical effects led to a marked depolarization of the short-circuited skin and a small increase in intracellular Na+ concentration. TPAs increase of PapNa was sufficient to explain the stimulation of basolateral Na+ transport when both the voltage and substrate dependence of the pump were taken into account. After the early stimulation, TPA later depressed ISC. Added at this point (congruent to 1-2 h after TPA administration), insulin had no effect on ISC, whereas a partial response to vasopressin was still observed. Measured either early or late after TPA addition, the phorbol ester reduced insulin binding by congruent to 40%. Insofar as 60% of the specific binding is retained, the abolishment of insulin's natriferic response is unlikely to result from the TPA-induced reduction in hormonal binding. The data provide further support for the concept that activation of PKC produces an early stimulation of Na+ transport by increasing apical Na+ permeability, and that part of insulin's natriferic effect may be mediated by PKC activation.
    [Abstract] [Full Text] [Related] [New Search]