These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Retinal Disease Screening Through Local Binary Patterns.
    Author: Morales S, Engan K, Naranjo V, Colomer A.
    Journal: IEEE J Biomed Health Inform; 2017 Jan; 21(1):184-192. PubMed ID: 26469792.
    Abstract:
    This paper investigates discrimination capabilities in the texture of fundus images to differentiate between pathological and healthy images. For this purpose, the performance of local binary patterns (LBP) as a texture descriptor for retinal images has been explored and compared with other descriptors such as LBP filtering and local phase quantization. The goal is to distinguish between diabetic retinopathy (DR), age-related macular degeneration (AMD), and normal fundus images analyzing the texture of the retina background and avoiding a previous lesion segmentation stage. Five experiments (separating DR from normal, AMD from normal, pathological from normal, DR from AMD, and the three different classes) were designed and validated with the proposed procedure obtaining promising results. For each experiment, several classifiers were tested. An average sensitivity and specificity higher than 0.86 in all the cases and almost of 1 and 0.99, respectively, for AMD detection were achieved. These results suggest that the method presented in this paper is a robust algorithm for describing retina texture and can be useful in a diagnosis aid system for retinal disease screening.
    [Abstract] [Full Text] [Related] [New Search]