These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of Functional Electrical Stimulation on Denervated Laryngeal Muscle in a Large Animal Model. Author: Cheetham J, Perkins JD, Jarvis JC, Cercone M, Maw M, Hermanson JW, Mitchell LM, Piercy RJ, Ducharme NG. Journal: Artif Organs; 2015 Oct; 39(10):876-85. PubMed ID: 26471139. Abstract: Bilateral vocal fold paralysis (BVCP) is a life-threatening condition that follows injury to the Recurrent Laryngeal nerve (RLn) and denervation of the intrinsic laryngeal musculature. Functional electrical stimulation (FES) enables restoration and control of a wide variety of motor functions impaired by lower motor neuron lesions. Here we evaluate the effects of FES on the sole arytenoid abductor, the posterior cricoarytenoid (PCA) muscle in a large animal model of RLn injury. Ten horses were instrumented with two quadripolar intramuscular electrodes in the left PCA muscle. Following a 12-week denervation period, the PCA was stimulated using a once-daily training session for 8 weeks in seven animals. Three animals were used as unstimulated controls. Denervation produced a significant increase in rheobase (P < 0.001). Electrical stimulation produced a 30% increase in fiber diameter in comparison with the unstimulated control group (33.9 ± 2.6 µm FES+, 23.6 ± 4.2 µm FES-, P = 0.04). A trend toward a decrease in the proportion of type 1 (slow) fibers and an increase in type 2a (fast) fibers was also observed. Despite these changes, improvement in PCA function at rest was not observed. These data suggest that electrical stimulation using a relatively conservative set of stimulation parameters can reverse the muscle fiber atrophy produced by complete denervation while avoiding a shift to a slow (type 1) fiber type.[Abstract] [Full Text] [Related] [New Search]