These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Protective effects of 3-alkyl luteolin derivatives are mediated by Nrf2 transcriptional activity and decreased oxidative stress in Huntington's disease mouse striatal cells.
    Author: Oliveira AM, Cardoso SM, Ribeiro M, Seixas RS, Silva AM, Rego AC.
    Journal: Neurochem Int; 2015 Dec; 91():1-12. PubMed ID: 26476055.
    Abstract:
    Huntington's disease (HD) is a polyglutamine-expansion neurodegenerative disorder caused by increased number of CAG repeats in the HTT gene, encoding for the huntingtin protein. The mutation is linked to several intracellular mechanisms, including oxidative stress. Flavones are compounds with a protective role in neurodegenerative pathologies. In the present study we analyzed the protective effect of luteolin (Lut, 3',4',5,7-tetrahydroxyflavone) and four luteolin derivatives bearing 3-alkyl chains of 1, 4, 6 and 10 carbons (Lut-C1, Lut-C4, Lut-C6, Lut-C10) in striatal cells derived from HD knock-in mice expressing mutant Htt (STHdh(Q111/Q111)) versus wild-type striatal cells (STHdh(Q7/Q7)). HD cells showed increased caspase-3-like activity and intracellular reactive oxygen species (ROS), which were significantly decreased following treatment with Lut-C4 and Lut-C6 under concentrations that enhanced cell viability. Interestingly, Lut-C4 and Lut-C6 rose the nuclear levels of phospho(Ser40)-nuclear factor (erythroid-derived-2)-like 2 (Nrf2) and Nrf2/ARE transcriptional activity. Concordantly with increased Nrf2/ARE transcription, Lut-C6 enhanced superoxide dismutase 1 (SOD1) mRNA and SOD activity and glutamate-cysteine ligase catalytic subunit (GCLc) mRNA and protein levels, while Lut-C4 induced mRNA levels of GCLc only in mutant striatal cells. Data suggest that Lut-C6 luteolin derivative (in particular) might be relevant for the development of antioxidant strategies in HD.
    [Abstract] [Full Text] [Related] [New Search]