These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Reconstitution of the histidine periplasmic transport system in membrane vesicles. Energy coupling and interaction between the binding protein and the membrane complex.
    Author: Prossnitz E, Gee A, Ames GF.
    Journal: J Biol Chem; 1989 Mar 25; 264(9):5006-14. PubMed ID: 2647746.
    Abstract:
    The periplasmic histidine transport system of Salmonella typhimurium has been reconstituted in isolated right-side-out membrane vesicles. The reconstituted system is entirely dependent on both the periplasmic protein, HisJ, and the membrane-bound complex, composed of proteins HisQ, HisM, and HisP. Transport is also dependent on the presence of ascorbate and phenazine methosulfate, which provide the energy for transport. Ascorbate oxidation generates a proton-motive-force, which allows ATP synthesis. ATP (or a cogenerated molecule) appears to be the immediate energy donor. Dissipation of the proton-motive-force or reduction of the level of ATP by a variety of treatments results in inhibition of transport. Vanadate inhibits transport, indicating that ATP utilization is necessary to energize transport. The interaction between liganded HisJ and the membrane complex has been measured directly: it displays Michaelis-Menten type kinetics, with a K1/2 of approximately 65 microM. The significance of this finding in terms of transport properties of whole cells is discussed.
    [Abstract] [Full Text] [Related] [New Search]