These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Differential pollen placement on an Old World nectar bat increases pollination efficiency. Author: Stewart AB, Dudash MR. Journal: Ann Bot; 2016 Jan; 117(1):145-52. PubMed ID: 26482654. Abstract: BACKGROUND AND AIMS: Plant species that share pollinators are potentially subject to non-adaptive interspecific pollen transfer, resulting in reduced reproductive success. Mechanisms that increase pollination efficiency between conspecific individuals are therefore highly beneficial. Many nocturnally flowering plant species in Thailand are pollinated by the nectar bat Eonycteris spelaea (Pteropodidae). This study tested the hypothesis that plant species within a community reduce interspecific pollen movement by placing pollen on different areas of the bat's body. METHODS: Using flight cage trials, pollen transfer by E. spelaea was compared between conspecific versus heterospecific flowers across four bat-pollinated plant genera. Pollen from four locations on the bat's body was also quantified to determine if pollen placement varies by plant species. KEY RESULTS: It was found that E. spelaea transfers significantly more pollen between conspecific than heterospecific flowers, and that diverse floral designs produce significantly different patterns of pollen deposition on E. spelaea. CONCLUSIONS: In the Old World tropics, differential pollen placement is a mechanism that reduces competition among bat-pollinated plant species sharing a common pollinator.[Abstract] [Full Text] [Related] [New Search]