These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Erythropoietin stimulates a rise in intracellular-free calcium concentration in single BFU-E derived erythroblasts at specific stages of differentiation. Author: Miller BA, Cheung JY, Tillotson DL, Hope SM, Scaduto RC. Journal: Blood; 1989 Apr; 73(5):1188-94. PubMed ID: 2649170. Abstract: Human cord blood progenitor-derived erythroblasts have recently been shown to respond to erythropoietin (Epo) or granulocyte-macrophage colony-stimulating factor (GM-CSF) with a transient increase in intracellular free calcium concentration [Cac]. However, the importance of [Cac] changes in mediating cell proliferation and/or differentiation is undefined. In the present study, the response of erythroid precursors at different stages of differentiation to Epo was examined. Erythroblasts were derived from adult blood erythroid progenitors (BFU-E) at day 7 or day 10 of culture. [Cac] was measured in individual Fura-2 loaded cells with fluorescence microscopy coupled digital video imaging. The dynamic range (Rmax/Rmin) of intracellular Fura-2 was similar to that measured in free solution, suggesting insignificant amounts of intracellular Ca insensitive forms of Fura-2. Baseline [Cac] of erythroid cells calculated with an in vitro calibration method was 44 +/- 4 nmol/L and with an in vivo method was 46 +/- 4 nmol/L. Treatment of day 7 BFU-E derived erythroblasts with Epo resulted in no significant increase in [Cac]. In contrast, in more mature erythroblasts (day 10 of culture), Epo stimulated a large increase in [Cac] from 49 +/- 11 nmol/L at baseline to 279 +/- 47 nmol/L. This [Cac] increase occurred in phosphate buffered saline (PBS) containing no added calcium. The increase in [Cac] persisted for 18 minutes and was dose dependent. Day 7 and day 10 control cells treated with either insulin or media showed no significant change in [Cac] during 18 minutes of observation. Our data demonstrate that early (day 7) and late (day 10) erythroblasts display different responses to Epo, at least in terms of intracellular Ca++ fluxes. The differential [Cac] response observed in early and late erythroid precursors to growth factor stimulation suggests that [Cac] may be an important signal in cell differentiation.[Abstract] [Full Text] [Related] [New Search]